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Motivation.We consider the problem of predicting
user dependent numerical item-ratings. Here the rat-
ing space is described by natural numbers between
zero and four. In general the rating parameter is
ordinal, such that the rating of an item grows with
its rating number. In this report we try to solve the
described problem by an assumption of splitting the
user item rating-matrix into user-/item-dependent
matrices via a biased matrix factorization performed
by stochastic gradient descent.

Predictor.We assume the following structure of gen-
erating ratings made by an user given to an item as
follows(1):

p : U × I → R , (u, i) 7→ r̄+ bU (u) + bI(i) +x(u)>y(i)
[1]

with the user/item/rating space U/I/R, the mean
rating r̄ of given sample set D, the biased rating
parameters bU/I ∈ R|U/I| and rating vectors x, y ∈ Rf .
This prediction allows a conditional decision how to
rate when a qualifying user/item or both not exist,
e.g. a non existing item leads to r(u) = r̄ + bU (u).
This prediction assumption corresponds to the matrix
factorization

R̃|U |×|I| = X>Y [2]
where

R̃|U |×|I| = R|U |×|I| − r̄|U |×|I| − bU · 1> − 1 · b>I , [3]

with the rating matrix R and the column wise
user/item vectors in X/Y ∈ Rf×|U/I|. The sample
set D describes in reality a sparse matrix R. The
user/item parameters bU/I describe the trend rating
for an user/item over all items/users.

Minimization Problem.To perform the matrix factor-
ization, equation 2 can be formulated into a non con-
vex minimization problem spaned by the data sample
points d = (u, i, r) ∈ D

min
bU ,bI ,x,y

‖R̃|U |×|I| −X>Y ‖2D

= min
bU ,bI ,x,y

L =
∑
d∈D

Ld =
∑

(u,i,r)∈D

(r(u, i)− p̂(u, i))2

+ c
(
|bU (u)|+ |bI(i)|+ ‖x(u)‖2 + ‖y(i)‖2

)
[4]

with the ridge parameter c > 0 for having a smaller
finited condition number (prevents overfitting). The
local extrema (hopefully local/global minimum) con-
dition is fulfilled by the equation

∇bU ,bI ,x,yL = 0, [5]

since the problem is non convex.

Stochastic Gradient Descent. Instead of performing
the gradient as the sum over the large number of data
points (|D| = O(105)), here we use the hopefully faster
convergating method of stochastic gradient descent
where the gradient ∇L is iterative approximated by
a single point gradient ∇Ld. With a learning rate
η > 0 every new gradient step updates the parameters
(bU , bI , x, y) in a following way:

(bU , bI , x, y)t+1 = (bU , bI , x, y)t−η∇Ld(t)(bU , bI , x, y)t

[6]
with t ∈ [|D|] and the random data sequence d(t) ∈ D.
The data point dependent gradient update can be
written as

r̂(u, i) = p(u, i)(bU ,bI ,x,y)

bias(u, i) = r(u, i)− r̂(u, i)
bU (u) += η(bias(u, i)− c · bU (u))
bI(i) += η(bias(u, i)− c · bI(i))
x(u) += η(bias(u, i) · y(i)− c · x(u))
y(i) += η(bias(u, i) · x(u)− c · y(i)) [7]

Monte Carlo Cross-Validation Grid Search.Next to
the minimization problem the outer parameters f, η, c
have to be chosen from a defined set of possible param-
eters. Therefore we use a cross-validation train-/test
scenario where the minimum mean of all test root
mean squared errors (RMSE) defines the best grid
point. The the train/test data samples are generated
in every run of monte carlo cross-validation nonrecur-
rent and randomly. For having a "good" test scenerio
the number of total monte carlo runs should be in
magnitude of hundreds or thousands.
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Data Set.We consider the following data set with
|U | = 1666, |I| = 1194, |D| = 434641 and its distribu-
tions shown in figures 1- 4.

Abb. 1. Rating distribution of data set

Abb. 2. User data points distribution with transformed user id

Abb. 3. Item data points distribution with transformed item id

The rating distribution shows that the algorithm
will be concentrated on predicting many zeros, because
the tradeoff to make good predictions for the rating
four is not very helpful for minimizing L.

Grid Search.As a first hyper parameter grid we
search for points within f ∈ {50, 100, 200} and
c, η ∈ {0.01, 0.02, 0.03, 0.04}. The program runs on
an instance with 2 x Intel Xeon 6140 18 Core 2,3
Ghz and 72 GB RAM through this grid with a max-
imal iteration number 50, 72 monte carlo runs and
a train ratio of 0.8. The total computation time is
around 500 minutes. The result for the three dif-
ferent numbers of f are shown in figure 5. In the
lower right corner of the f 50 grid search the learning
rate leads to overflow problems. Here the best grid
point is chosen with a test RMSE of 0.466 and train

Abb. 4. Heatmap Data Rating Matrix

Abb. 5. Grid search with 72 monte carlo runs and max. iter = 50
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RMSE of 0.262 at f = 200, c = 0.02 and η = 0.01.
As a second more accurate and better located grid
search we use now 100 maximal iterations in the grid
f ∈ {100, 150, 200}, c ∈ {0.001, 0.005, 0.01, 0.015} and
η ∈ {0.005, 0.01, 0.015, 0.02}. The results are not very
differing from the first grid search, see in figure 6. In

Abb. 6. Grid search with 72 monte carlo runs and max. iter = 100

general we can see that c has an elementary impact
on the model overfitting, such in the way that the
train RMSE is going down and the test RMSE up. In
the case of f = 200 it is essentially that c > 0 because
now we have more parameters than data points.

Build Model.The program chooses the grid point at f
= 200, c = 0.015 and η = 0.005 and trained the final
model withhelp of the total data set with a maximal
iteration number of 200 (see RMSE vs iteration in
figure 7). The qualifying data set contains users that
not exist in the train data set (unknown users: 178,
307, 967, 1502, 1680, 3425, 4304, 4310). The RMSE of
the qualifying data set is 0.485. This value is around
the expected test RMSE of grid search. Here the
stochastic gradient descent is only run by one thread
instead of the grid search phase, where all threads
worked in parallel for its own monte carlo run. A
way to perform the minimization problem in parallel
is to transform in a alternating way the minimizing
problem to a convex problem by holding one side of
the parameters constant. Then we have a traditional
linear regression problem that can be solved in parallel
for all users/items. This method was used at first but
the convergence was reasoned by this greedy algorithm
in a global problem very poor.

Abb. 7. Final model building withhelp of the total data set

1. (5.August 2018) https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf, MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS.
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